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1. INTRODUCTION

Distributed simulation has become an important technique in the evaluation

of complex systems, Various algorithms have been developed to correctly
execute a simulation task on multiple processors [5]. Our interest in this

work is to examine the performance of one of these algorithms, Time Warp

[7], when it runs on many processors.
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Discrete-Event Simulation (DES) is generally accomplished by partitioning

a physical system into logical processes (LP), which communicate by sending

and receiving timestamped messages. Each LP might be placed on a separate

processor in an attempt to gain speedup proportional to the number of

processors used. Unfortunately, ideal speedup is often not attained as the

synchronization algorithms that maintain the correctness of a simulation do

not come without a performance cost. Early algorithms were dubbed “con-

servative” techniques due to their use of blocking to maintain correct syn-

chronization between Logical Processes [22]. In an attempt to limit the cost of

synchronization, a protocol called Time Warp (TW) was developed by Jeffer-

son. The Time Warp mechanism allows Ll?s to process messages as they are

received; though if more than one message is in the message queue, the one

with the minimum timestamp is processed first. If a message arrives that has

a lower timestamp than the value of the LPs clock, the LP is rolled back to

the time of this message. This is able to be accomplished because the system

periodically saves the state of the LP. Any effects of having advanced too far

(i.e., erroneous messages) are canceled through an elegant technique using

“antimessages.”

2. TYPES OF MODELS

Analysis of distributed simulation has lagged the practice for many years.

Recently, much important work has appeared in this area. Before discussing

this work, we must briefly describe the types of models used.

Message-initiating models. A message-initiating model is one in which a

logical process performs no work unless it receives a message from another

logical process. The best examples are queueing networks where each

server) queue has nothing to do until the arrival of a message from another

server. The messages in the simulation correspond to the customers in the

queueing system. Messages carry the work in this class of systems. Gener-

ally, the system starts with a set of messages “preplaced” in certain queues.

The system progresses by processing these messages and generating new

ones. This type of system is not unlike a data flow model and most accurately

models the original definition of the Time Warp algorithm [7].

Self-initiating models. Another type of simulation is the self-initiating

model [23]. This system is one where each logical process performs work

independent of whether it has received any messages from other logical

processes. Here, we find that messages do not carry work; rather, they merely

provide some sort of state information. This information is necessary to allow

the receiver to accurately execute some event, but does not cause the event to

be executed. The example used in [23] is the Ising Spin model [17]. In this

system, each logical process models a particle, which randomly and indepen-

dently decides to modify its state (say at simulated time v). Its new state is a

function of the states of neighboring particles at time v. Messages passed
between LPs convey state information; they do not cause the processor to

reevaluate its state.
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Hybrid models. Some systems contain elements of both message-initiating

and self-initiating models. A good example of this is a trace-driven multipro-

cessor cache simulation [16, 23]. Each logical process simulates operations

(reads and writes) of one physical processor’s cache, and each proceeds

independently of the other LPs. A message is sent to other logical processes

whenever a reference is made to global memory. The arrival of a message at a

logical processor does not cause reads or writes; rather the state of the cache

might have to be updated (invalidation of entries). Processors can proceed

without the receipt of any messages. When a message does arrive, the LP

must perform some work. This differentiation between models becomes im-

portant when discussing analytical work.

3. PREVIOUS WORK

Our work focuses on the performance evaluation of Time Warp for self-initiat-

ing models. Lavenberg, Muntz, and Samadi [11] provided the first analysis

for a TW system using a two-processor self-initiating model. They developed

an approximation for speedup, which was valid if the interaction between the

processors was small. Mitra and Mitrani [21] also examined a self-initiating

two-processor model and developed an exact formula for the distribution of

separation in virtual time between the two processors and for the rate of

progress in simulated time per unit real time of the two-processor system.

Kleinrock and Felderman [4, 9, 10] unify the previous two models and extend

their own to include costs for state saving, rollback, and message queueing in

[3]. Madisetti [19, 201 provides bounds on the performance of a two-processor
self-initiating system where the processors must have different speeds of

processing and move at constant (deterministic) rates. Madisetti extends his

model to multiple processors, something not done in any of the previously

mentioned work.
Lin and Lazowska [ 15] have examined Time Warp and conservative meth-

ods by using critical-path analysis. Also, they have examined TW itself [ 13,

14, 16] to understand better the state-saving overhead, rollback mechanisms,

and processor-scheduling when running the TW algorithm.
Multiple processor Time Warp analysis is appearing only recently. Gupta

et al. [6] solve for the performance of Time Warp with multiple, homoge-

neous, message-initiating processors. The authors use a Markov chain ap-

proach where the state variable is the number of completed, but uncommit-

ted, events at a processor. An approximate solution is obtained and is shown

to be quite accurate over a wide range of parameters.

Complementary work on a self-initiating (rather than message-initiating)
model was done by Nicol [23]. He provides upper and lower bounds on the

optimal performance of multiprocessor self-initiating models, an upper bound

on Time Warp performance, and a lower bound on the performance of a new

conservative protocol. This work is most akin to ours and uses a similar

model. A more thorough discussion of the relationship between Nicol’s model

and ours appears at the end of Section 4.
Chang and Nelson develop extensive analysis of a model similar to ours in

[1]. Their model uses blocking synchronization instead of rollback synchro-
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nization, but since neither our model nor theirs includes extra costs for the

synchronization, the results for efficiency\ speedup will be the same. Their

work concentrates on showing that efficiency of the processors is lower

bounded away from zero as the number of processors increases. They are

interested most in understanding how the interconnection topology affects

performance. They develop an excellent lower bound for systems with general

interconnection topologies. The best lower bound we develop is derived using

similar techniques to those in their paper. We are able to provide tight upper

bounds and excellent approximations in our work, something not addressed

in the Chang and Nelson paper. Finally, since they analyze a more general

system their analysis is quite involved. A major contribution of this paper is

its mathematical and analytical simplicity.

4. DEFINITION OF THE MULTIPLE PROCESSOR SYSTEM

The multiple processor model for Time Warp is a straightforward extension

to the model we developed in [4] and is similar to the model introduced by

Nicol [23]. There are P processors in our system with each processor main-

taining its own local clock. Processors communicate by sending timestamped

messages. Each processor will take an exponentially distributed amount of

time (with mean one) to complete processing an event. After completion of the

event, the processor will advance its local clock (virtual time) by exactly one

unit. Processors make single steps forward in virtual time at each advance,

and virtual times are restricted to the integers. After a processor advances, it

sends a Message to exactly K processors uniformly chosen from the other

P – 1 processors; K is defined as the fan-out of the model [23]. The message

is time stamped with the virtual time of the sender after it advances. There-

fore, the system has no lookahead which means that a processorlprocess is

unable to predict its future behavior or output. Messages are used only for

synchronization and do not carry work. Since our interest is in the cost of

synchronization, messages that arrive in the virtual time future of a proces-

sor are ignored. Messages that arrive in the past cause a rollback. With more

than two processors comes the possibility for “cascading” rollbacks. Each

processor must maintain a queue of messages that it has sent to other

processors. If processor PI is forced to rollback to virtual time v, then it must

“cancel” any messages it sent to other processors with virtual time greater

than v. These cancellation messages may potentially cause a rollback at the

receiving processor, forcing it to send its own cancellation messages, etc.,

Receivers only rollback to the time of the erroneous message; they do not

necessarily rollback all the way to virtual time v + 1. A fairly complex

analysis of the potential performance degradation due to cascading rollbacks

may be found in [18]. We assume that messages are transmitted instanta-

neously in real time; there is no communication delay between sending and

receiving a message.

The performance measure of interest is speedup and is measured as the

rate of virtual time progress of the P processor system divided by the rate of

a single processor. We assume that all processors take an exponential amount
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of time with mean one to complete an event. The single processor moves at

rate one. In the next few sections we calculate bounds on the rate of virtual

time progress of this system. We note here that since our model for Time

Warp does not include costs for state saving and rollback our solutions are

actually bounds on optimal execution of this distributed simulation. If Time

Warp does not pay any penalty for its optimistic execution, it will be optimal

since it never blocks unnecessarily.

In comparison to our model, Nicol’s model has a deterministic real time to

complete an event and a distribution on the advance in virtual time after

finishing the event. This is exactly complementary to our model, which has a

distribution on the real time it takes to complete processing an event and a

deterministic single step forward in virtual time after completing the event.

Further, Nicol’s model for Time Warp includes costs for state saving and

rollback; our model neglects these costs.

The model is motivated by several applications that would behave like the

self-initiated system we are studying. One example [24] is the optimistic

simulation of an SIMD architecture. The instruction counter is the virtual

time of a given processor. Each processor can advance forward executing

instructions by making guesses for the value of any variables requested from

processors that have not yet advanced as far. When the lagging processor

finally generates the needed value, it sends messages to all processors that

needed that value. They will all be rolled back to the instruction after the

generation of the needed value. A second example, that comes from [1], is the

execution of an iterative algorithm (e.g., a coupled set of equations) on a

parallel processor. An equation may need values from a previous iteration of

other equations. If we allow processors to guess these values, then roll back

once the values are available, we produce precisely the model studied in this

paper. In the two examples just given, one may allow the processors to block

instead of optimistically executing forward in time. Since our model includes

no cost for rollback, the processor will eventually return to this virtual time

when the lagging processor sends it a message, thus, blocking and optimisti-

cally executing result in the same speedup. It is easier to analyze the model

when thinking of the optimistic approach. Finally, the aforementioned Ising

Spin model described in detail in [17, 23] is also an appropriate example.

5. TRACKING GLOBAL VIRTUAL TIME ADVANCEMENT

One technique for measuring the progress of this system is to track the

progress of Global Virtual Time (GVT) [7]. GVT is defined as the minimum
virtual time of all local clocks in the system and of any messages in transit.

Since our model assumes that there is no real-time communication delay in

sending a message, there will never be any messages in transit, and GVT is

simply the minimum timestamp in the system. Since all virtual-time ad-

vances are discrete (i. e., the processors lie on discrete points on a virtual-time

axis), there may be several processors sitting at GVT at some point in real

time. For example, Figure 1 shows a virtual time snapshot of a ten-processor

system at real time t.We can see that processors four and six are sitting at
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Fig. 1. Snapshot of the virtual-time position of processors at real time t.

GVT = 4. In general, there can be anywhere from one to P processors sitting

at GVT at any point in real time. Any processors executing events ahead of

GVT are performing speculative computations. The only tasks actually guar-

anteed to be correct are those with timestamps less than or equal to GVT.

This notion of focusing on GVT is the key to the simple analysis that

follows. We can ignore the complicated advances\ rollbacks of all the proces-

sors that are ahead of GVT. The progress of the furthest behind processors

completely determines the progress of the entire system.

If we know the exact number of processors at GVT at any point in real

time, we may easily calculate the “instantaneous” rate of progress of the

system. With G processors at GVT, we know the distribution of the amount of

real time before GVT advances one step (all G processors have to move).

When the event-processing time is exponentially distributed at rate one, the

expected time to advance GVT is simply the time it takes for the maximum of

G exponential to complete. This is H[ G] by first principles. H[ j] is the

harmonic series H[j] = Zi. ~ ~. If we were able to calculate the distribution

of the number of processors sitting at GVT after GVT advances, we could

derive the average rate of progress of the P processor system and its speedup
over a single processor.

The bounds derived in the next sections are created by bounding the

number of processors at GVT after GVT advances. If we provide a lower

bound on the number of processors at GVT, we create an upper bound on

speedup. Conversely, an upper bound on the number of processors creates a

lower bound on speedup. This technique allows our analysis to be extremely

straightforward. We do not need to concern ourselves with the location of
every processor, only those sitting at (or near) Global Virtual Time. This is a

tremendous advantage over more complicated models and analyses.
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Fig. 2 Normalized speedup versus K for 128 processors

The derivation of each bound requires a different restriction on the values

of P and K. These restrictions will be discussed with each bound.

6. A SIMPLE UPPER BOUND

Certainly, the minimum number of processors at GVT, after GVT advances,

will be K + 1 since when the last processor moves forward to allow GVT to

advance, it will send messages to K processors and pull them back to the new

GVT. In general, there will be more than K + 1 processors at GVT after GVT

advances so our speedup will be less. If there were always K + 1 processors

at GVT after a GVT advance, then the rate of progress of the system would be

1
Rate =

ll[K+ l];

and an upper bound on speedup (S) is thus

P
S5SSU=

HIK+l]
(1)

An excellent approximation for H[ j] which removes the summation and

allows for noninteger values of j is [8]

1/12
H[.il =E, +ln(j)+; –

J(J+l)

where E, = Euler’s Constant = 0.57722.

In Fi5gure 2, we show this analytic bound on speedup versus K for 128

processors as well as the speedup values derived from a simulation of our
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model. We simulate our P processor model since we are merely trying to

verify how well our approximations match our model. We are not comparing

the approximations to an actual implementation of Time Warp or any other

simulation mechanism. As might be expected, the upper bound is not very

tight when K is small, but is exact for K = P – 1 and quite tight for

K/P > 1/2.

When the last processor advances, there must be at least K processors that

already jumped. Therefore, P – 1 > K or P > K + 1. Also, we must have

P >2 or the model does not make any sense.

7. A BETTER UPPER BOUND

Using the technique above, we can “iteratively” improve the upper bound.

Instead of looking only after the last processor advances, we can concentrate

on what happens as the last two processors advance from GVT. After the

penultimate processor advances there will be at least K processors sitting at

GVT + 1. Often, there will be K + 1 processors at GVT + 1 unless the

penultimate processor sends a message to the one processor still sitting at

GVT. We can calculate how many of these processors are still at GVT + 1

when the final processor advances.

Prob[ i of the K procs. remain when last one advances GVT]

= [:](;)’(:)K-Z

-( )( 1

_KIK

i z

since each one independently has probability 1/2 of not advancing prior to

when the last processor advances. This is due to the exponential assumption

on the time for each processor to execute an event. The GVT processor and

the K processors at GVT + 1 each have the same distribution for the time to

complete processing an event. Therefore, each of the K processors has the

same probability 1./2 of still being at GVT + 1 when the last processor

advances.

For future reference let us call these remaining processors the red proces-

sors. In addition to the i red processors that remain when the last one

advances, the last processor will send a message to K randomly chosen

processors. Some of these processors will be part of the red set; others will be

forced to rollback. In fact

Prob[ j of K msg rcvrs. are in the red set Ii in red set]

_ (Np=i)—
()P–1

K
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The above derivations had K processors at GVT + 1 after the penultimate

processor advanced. This will occur if that advancing processor does send a

message to the one processor sitting at GVT. This occurs with probability

given below:

Prob[ advancing processor sends a message to proc. at GVT]

()P–2

K K
_—

()

‘1– P–1 ‘P–1”

K

Therefore, using conditional probability, the final equation for the improved

upper bound on speedup is

(2)

This bound requires that there be K processors that advanced before the

penultimate (second-to-last processor). Therefore we have P – 2 > K or P >

K+2.

This technique of looking several processors back before the final one

advances from GVT can be extended to more than two processors into the

past if K and P satisfy more stringent conditions. In general, we must have

P – i > K where i is the number of processors used for calculating the

bound.
If we look when the third-to-last processor jumps we may create a more

accurate, yet more complicated upper bound. When the third-to-last processor

jumps there will be at least K – 1 processors at GVT + 1. There may be up

to K + 1 depending again on whether a message is sent to processors sitting

at GVT. First,

Prob[ i of the K – 1 procs. remain when penultimate one jumps]

Since each processor has a 2/3 chance of remaining at virtual-time one when

the penultimate processor advances. This value is easily derived from the

following example. There are two processors at GVT, call them “A and “B.” A

third processor called “C” is sitting at GVT + 1. “C” is representative of any
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of the K – 1 processors at GVT + 1. Each of the processors A, B, and C are

equally likely to advance first due to the exponential assumption. The

following lists all the possible orderings of task completion time of the three

processors:

ABC ACB BAG BCA CAB CBA.

The first four cases are when “C” is still at GVT + 1 as the penultimate

processor advances (4/6 = 2/3).

Next, as before, we find the number of receivers in the red set when the

penultimate processor advances, given that i were in the red set.

Prob[ j of K msg rcvrs. are in the red set Ii in red set]

At this point we would have K + i – j processors one step ahead and one at

GVT. The remaining calculation is exactly the same as was done for SU, and

is just a matter of conditioning and summing.

These bounds are tedious to calculate. We may simplify the expressions by

approximation. The approximations allow us to derive simpler expressions for

the bounds, but sacrifice accuracy. We may eliminate one sum from SUO by

noting that the expected number of message receivers not in the red set is

E[Number of rcvrs. NOT in the red setl i in red set]

‘(’-+)K
by noting that i/(P – 1) of the K processors that receive a message will be in

the red set. We further simplify the bound by assuming that, on average, one

half of the K + 1 or K processors left after the penultimate processor jumps

will remain as red processors when the final processor jumps. Finally, we use

the average number of processors at GVT after the penultimate processor

advances, which is found from

E[Number of procs. at GVT after penultimate proc. advances]

( =)+’(=1=( K+l)l -

=l+K(P–2)

P–1 ‘

Therefore, the approximate upper bound is
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Of course, these approximations lead to inaccuracy in the upper bound. These

errors are most apparent for small K. Figure 3 lists the values of SU, and SU:,

for 1< K < 10 and P = 256. We see that the approximation is within one

percent for K >4 (K/P = 4/256 > 0.015). So it appears that the approxima-

tions yield results that are sufficiently close to the true values.

In order for these approximation techniques to be exact, the following

would need to be true,

f[l?[l]] =E[f[x]],

meaning that the expectation of a function of x is equal to the function of the

expectation of x. In general this is not true, but is fairly accurate for our

function 11[ x ] for large enough x. Unfortunately though, the approximate

upper bound is smaller than the true upper bound. Therefore, the approxima-

tions are not proper upper bounds, rather approximate upper bounds. Where

accurate, true upper bounds are needed, we must use the exact formulas.

Pressing on with the approximation method, we see that the “three-step”

upper bound may be approximated in the same fashion. When the third-to-last

processor jumps, on average, there will be approximately 1 + K(( P – 3)/ (P

– 1)) processors at GVT + 1. When the next processor jumps there will be, on

average, 2/3 of those processors in the red set and

(

2K(P – 3)
l–

3(P – 1) 1

processors pulled back by the second to the last processor. Of these proces-

sors, approximately 1/2 will remain as red processors when the final proces-

sor jumps.

Generalizing this technique leads to the following set of recursive equations

that generate a lower bound on the number of processors at GVT after GVT

advances by calculating from the Max to last processor to jump.

‘z’i’=l+Kr~Mn‘2Max (4)

l’z[i+ l]i
n[i] =

i+l

( 72[z + l]i i—1
+l+K1–

(i+l)(P–1) P–1 1

i < Max (5)

Equation 5 may be explained as follows. The

number of processors remaining in the red set.

processor. Finally, the last term is the expected

rolled back by the advancing processor. At most,

first term is the expected

The “l” is the advancing

number of new processors

there would be K proces-

sors. Then we subtract the expected number of message receivers in the red

set and the expected number of message receivers still sitting at GVT. If we
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Fig. 3. Approximation error for the two-step upper bound versus K for 256 processors

set Max = 1, then we have n[ 1] = (K + 1), our original approximation. The

approximation for several values of Max is shown below.

Max=l~n[l]=K+l (6)

[

K(P–2) ~+ K(P2)
1+

Max=2~n[l]=l+Kl–

1

P–1 + P–1

2( P–1) 2
(7)

Max= 3~n[l]

[

( K(P–3)

1(

1

K(P–3)

1
21+

P–1
21+

l+ Kl– —
P–1

+
1

P–l– 3(P– 1) 3

=1+ o

+K

L

i

( K(P–3)

1
2 1+

1+-K l–—
P–1 )

P–1 – 3(P–1)

l– \

2(P–1)

(8)

( K(P–3)
2 1+

P–1
+ i

3

/
(9)

Some of these stepwise approximations are plotted in Figure 4 for 256

processors, and we see the diminishing returns as we calculate further back

from the last processor to advance from GVT.

7.1 An Approximation

When these approximations are used to create an upper bound, the approxi-

mation is lower than the exact calculation of the upper bound. Therefore, the
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Fig. 4. Bounds on the number of processors at GVT after GVT advances for 256 processors.

approximation is not guaranteed to be an upper bound. But, by using a large

enough value for Max, we generate an extremely tight (approximate) upper

bound that we may use as an approximation for the exact value of speedup.

The equation we will use for the approximation is when Max = 10 (arbitrary

choice), the ten-step approximation. Therefore, the speedup approximation is

P
s=

H[rz[l]lMax=lo] “
(10)

8. A LOWER BOUND ON SPEEDUP

we find a lower bound on speedup by overestimating the number of proces-

sors at GVT when GVT advances. Too many processors at GVT means the

system will advance more slowly than the normal system. Imagine placing all

the processors at virtual-time zero and allow them to proceed normally. When

the last processor jumps from virtual-time zero to virtual-time one. there

would be more processors at virtual-time one than would normally be ex-

pected if the system were in steady state. This is the basis for our lower

bound on speedup. By ordering the processors by their time of advancing

from virtual-time zero to virtual-time one [24], we may easily calculate the

number of processors remaining at virtual-time one when the last processor

advances from virtual-time zero.

The first processor to advance has probability 1,/P of still remaining at

virtual-time one until the last processor advances. This is due again to the
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exponential assumption. When the first processor advances, there will be a

single processor at time one and P – 1 at time zero. In order for this

processor to have stayed at time one (without advancing) until the last

processor advances from time zero, it would have to be the last of P

processors to advance. The second processor to advance from time zero has

probability l/(P – 1) of remaining at time one; the third has l\(P – 2), and

so on. When each of these processors advanced each would, at most, pull back

K processors. All K + 1 processors (K pulled back plus itself) would have the

same probability (given above) of remaining until the last processor advanced

from virtual-time zero to virtual-time one. Therefore, the expected number of

processors remaining when the last one advances is

E[ Num. procs. remaining when GVT advances one step]

= (K+ l)(HIP] - 1).

The final processor will pull back an additional K (at most), and adding in

itself we find

E[Number of processors at GVT after GVT advances 1 step]

<( K+l)(HIP]–l)+K+l

= (K+ l) HIP].

Therefore, a lower bound on speedup is

P

s 2s1 = H[(K+ l) HIP]] “
(11)

This bound also approximates the expectation of a function of x by a function

of the expectation of x. Since this approximation is lower than the true lower

bound, the approximation is a proper lower bound.

The bound can be improved by using a technique akin to that found in [1].

Our bound above grossly overestimates the number of processors at GVT

after the single step advance. We improve it as follows. Again, order the

processors by their departure from virtual-time zero. Now, look at the system

when there are still [P/( K + 1)1 processors left at virtual-time zero. If we

assume that each of these processors will send a message to a different set of
K processors when it advances, then these remaining processors will “pull

back” all P processors. We calculate how many of the processors will still be
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remaining when the last processor advances to virtual-time one in the same

fashion as the previous bound.

E[Num. procs. remaining when GVT advances]

l–l

P

h-+ 1 1
<( K+l) ~ ~

~=z 1

II

P

[- )

K+ 1
=(K+l) ~ :-1~=1

‘(K+ l’(H[kH -’1
The final processor will pull back an additional K (at most), and adding in

itself we find

E[Num. procs. at GVT after GVT advances 1 step]

‘(K+llH[l+l]-ll+ K+l

[1 11‘( K+l)H & .

Therefore, the revised lower bound on speedup is

S2S[=

H[(K+4HI”
(12)

In Figure 5, we plot simulation data for 128 processors versus the two-step

upper bound (Equation 2), the approximation (Equation 10), and the lower

bound (Equation 12). Figure 6 shows a close up of the region where K is

small ( 1 < K < 25). In Figure 7, we show simulation speedup versus number

of processors for various values of K. Also included on this plot are the upper

bound, approximation, and lower bound. In Figure 8, we show how the
bounds scale with an increasing number of processors (F’) for various values

of K. The important point of this plot is to see that the lower bound increases

linearly as P increases. The performance of the system continues to increase

significantly as P increases. We can see why this is true by examining the

lower bound more closely. Remembering that

H[.il = 0.57722 + lnj + ~ –
1/12

j(j + 1)
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Fig. 5. Bounds on speedup versus K for 128 processors.

we see that for large P the lower bound is essentially

“=+“4+))
P

—
P“

()
ln(K+ 1) +lnln —

K+l

For K fixed, as P increases Sl is effectively equal to P\(constant). One over

that constant is the efficiency. For example, if P = 65536 and K = 10, we
P

find that in ln( ~) = 2.16 and ln(K + 1) = 2.40, the sum is 4.56. There-

fore the efficiency is approximately 22%. Lastly, we show the lower bound on

efficiency (S/P ) versus P and K in Figure 9 and note that efficiency decays
fairly rapidly for small K, but flattens out quickly and stays well above zero

for large P and K.
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Fig. 6 Bounds on speedup versus K for 128 processors (1 < A’ < 25).

As noted in [1 (Corollary 2.6)] and [23 (Section 3.1. l)], the lower bound

using an exponential distribution is also a lower bound for any distribution

that is New Better than Used in Expectation (NBUE). An NBUE distribution

is one where the expected residual life is less than or equal to the expectation

of the distribution.

9. COMPARISON TO PREVIOUS WORK

9.1 Two Processors

For the limiting case of P == 2 and K = 1, in previous work [2, 4] we have
derived exact solutions for speedup. For the present model the upper bound

and lower bound both equal P\H[2] = 4/3. As expected, this is the exact

value for speedup derived for the two-processor case.

9.2 Nicol’s Bounds

It is interesting to compare these bounds to the results developed by Nicol

[23]. The difference between the models is that the deterministic and random

portions are reversed. His model has deterministic real-time and random
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Fig. 7. Simulation speedup with lower and upper bounds.
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Fig. 8. Bounds on speedup versus number of processors for K = 1,20.
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Fig. 9. Lower bound on efficiency versus P and K.

virtual-time increments while our model has random (exponential) real time

to process an event and deterministic advances in virtual time. The coarse

bounds we generated for speedup are

++’’iai ‘speedupsH[;+’]
Nicol calculated an upper bound on optimal efficiency of l\K for an exponen-

tial distribution on the virtual-time increment. Unfortunately, his lower-

bound calculation requires some lookahead in the system whereas ours does

not. A comparison is not warranted. Our upper bound on efficiency scales as

approximately l/in K while Nicol’s scales as I/K. We show these two upper

bounds and our lower bound for P = 1024 in Figure 10. Notice that Nicol’s
upper bound lies below our lower bound.

The basic conclusion is that modelers need to be very explicit about their

assumptions and modeling technique before making any claims about the

performance of these systems. One might have guessed that our results and

those of Nicol would be very similar. That is clearly not the case.

10. CONCLUSIONS

This paper provided upper and lower bounds on speedup for optimistic

self-initiating simulation using a new, continuous-time, discrete-state model

that does not exploit lookahead. The bounds were derived from a simple

understanding of the behavior of the processors determining GVT. To evalu-

ate speedup, we need not be concerned with the advances and rollbacks of

processors that are ahead of GVT, thus simplifying the analysis. We also

created an approximation for speedup by iteratively improving the upper
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Fig. 10. Bounds on efficiency versus K for P = 1024.

bound. The basic bounds on speedup derived in this paper are

++’’kll] ‘speedup<H[:l]’
where P is the number of processors, K is the message fan-out from each

1

processor, and H[ j] is the harmonic series H[ j] = x~= ~ ~. The upper bound

may be improved in an iterative fashion, and a suitablyZ tight upper bound

was used as an approximation. The lower bound shows that speedup will

essentially increase linearly as P increases for a fixed fan-out. This implies

that the optimistic approach should be able to gain excellent speedup assum-

ing costs for rollback can be kept small.

REFERENCES

1. CHANG, C. S., AND NELSON, R. Bounds on the speedup and efficiency of partial synchroniza-

tion in parallel processing systems. Tech. Rep. RC 16474, IBM ‘r. J. Watson Research Center,
Yorktown Heights, N.Y., Jan. 1991.

2. FELD~RMAN, R. E. Performance analysis of distributed processing synchronization algo-
rithms. Tech. Rep. 910019, Univ. of California, Computer Science Dept,, Los Angeles, 1991,
Ph.D. dissertation.

3. FELDERMAN, R. E., ANII KLETNROCK, L. Two processor time warp analysis: Capturing the
effects of message queueing and rollback\ state saving costs. Tech. Rep. 920035, Dept. of

Computer Science, Univ. of California, Los Angeles, 1992.
4. FELDERiMAN,R. E., AND KLEINROCK, L. Two processor time warp analys,s: Some results on a

unifying approach. In Proceedings of the 5t11 Workshop on Parallel and Distributed S~mula -

tton (PADS91), vol. 23, Society for Computer Simulation, Jan. 1991, pp. 3–10.

ACM Transactions on Modeling and Computer Simulatmn, Vol. 1, No. 4, October 1991.



406 - R. E. Felderman and L, Kleinrock

5. FU.JIMOTO, R M. Parallel discrete event simulation. Cornmun, ACM 33, 10 (Oct. 1990),

30-53.

6 GUPTA, A., AKYILmZ, I. F., AND FUJIMOTO, R. M. Performance analysis of time warp with

multiple homogeneous processors. IEEE Trans. Softu.I. Eng 17, 10 (Oct. 1991), 1013–1027,
7. JEFFERSON, D. R. Virtual time. ACM Trans. Prog. Lang. Syst. 7, 3 (July 1985). 404-425.

8. JOLLEY, L. B. W. Summatmn of Series. 2d ed Dover, 1961.

9. KI.MNROCK L. On distributed systems performance. Comput. Netu,. ISDN Syst. 20, 1-5

(Dec. 1990),206-215.

10. KLF,INROC~, L., AND FELDERMAN, R. E. Two processor time warp analysis: A umfying

approach. Tech Rep. 920034, Computer Science Dept, Umv of California, Los Angeles ALSO
Int J. Comput. Slmul.

11,LAVENT3ERG, S,, MUNTZ, R., AND &mL4DI, B, Performance analysis of a rollback method for

distributed simulation. In Perforntance’83. North Holland, Amsterdam, 1983, pp, 117-132.

12, LIN, YI-B, AND LAZOWSm, E. D. A study oftlme warp rollback mechanisms. ACM Trans.

Model. Comput Szmu/, (Jan. 1991), 51-72.

13, LIN, YI-B., AND LAZOWSW, E. D. Effect of process scheduhng in parallel simulation. Int. J

Comput, Szmul. 2, 1 (1992), 107-121.
14. LIN, YI-B., ANI) L.AZOWSKA, E. D. Reducing the state saving overhead for time warp parallel

simulation. Tech. Rep. 90-02-03, Dept. of Computer Science and Engineering, Univ. of

Washington, Feb. 1990.

15. LIN, YI-B., AND LAZOWSW, E D. Optlmality considerations for “time warp” parallel simula-

tion, In Proceedings of the SCS Multwonference on Dzstrzbuted Slmulatlon, vol. 22, 1, Society

for Computer Simulation, Jan. 1990, pp. 29-34,

16. LIN, YI-B., LAZOWSIQL E. D., AND BAER, J.-L. Parallel trace-driven simulation of multiproces-

sor cache performance: Algorithms and analysls, Tech. Rep. 89-07-06, Dept. of Computer

Science and Engineering, Univ. of Washington, Seattle, July 1989.

17 LU~ACHEVSRY, B, D. Efficient parallel simulations of asynchronous cellular arrays, Complex

Syst 1 (1987), 1099-1123.

18. LUBACHEVShT, B., SHWARTZ, A., AND Wmss, A Rollback sometimes works if filtered. In

Proceedings of the 1989 Winter Slmulatzon Conference. 1989, pp. 630-639.
19. MADISErTI, V. K. Self-synchromzing concurrent computmg systems Tech. Rep. UCB\ERL

M89\122, Electronics Research Laboratory, College of Engineering, Urnv. of California,
Berkeley, Oct. 1989.

20. MADISETTI, V , WALRAND, J., AND MESSERSCHMITT, D. Synchronization m message-passmg

computers: Models, algorithms, and analysls. In Proceedings of the SCS Multzcon ference on

Dlstrlbuted Szmulatzon, vol. 22, 1, Society for Computer Slmulatlon, Jan. 1990, pp. 35-48,

21 MITRA, D., AND Mrrwiw, I. Analysis and optimum performance of two message -passing

parallel processors synchronized by rollback. In Performance ’84. Elsevler Science, North-

Holland, Amsterdam, 1984, pp. 35-50.

22. MISRA, J. Distributed discrete-event simulation. ACM C“omput. Suru. 18, 1 (Mar. 1986),

39-65

23. NICOL, D. M. Parallel self-initiating dmcrete-event simulations ACM Trans Model, Corn -

put. Sunu/. 1, 1 (Jan. 1991), 24-50.

24. SHF,N, S. The Virtual Time Data Parallel Machine. Ph D. thesis, Uni\,, of California,

Computer Sc]ence Dept., Los Angeles, Sept. 1991.

Received September 1991; revlscd March 1992; accepted May 1992

ACM TransactIons on Modellng and Computer Simulation, Vol 1, No 4, October 1991


